In this work, the ohmic contact mechanism of Ni electrodes on C-faced 4H-n-SiC was investigated by evaluating the electrical and microstructural properties in the contact interface as a function of… Click to show full abstract
In this work, the ohmic contact mechanism of Ni electrodes on C-faced 4H-n-SiC was investigated by evaluating the electrical and microstructural properties in the contact interface as a function of annealing temperatures ranging from 950 to 1100°C. We determined that Ni-silicide, especially the NiSi phase, plays a key role in the formation of ohmic contacts rather than an increase in carbon vacancies in the C-faced SiC substrate. A vertically oriented NiSi phase was observed in the thermally annealed sample at the optimized temperature that behaves as a current path. A further increase in annealing temperature leads to the degradation of ohmic behavior due to the formation of horizontal-type NiSi in the Ni-rich Ni-silicide/NiSi/SiC structure.
               
Click one of the above tabs to view related content.