LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Time-Varying Ocean-Like Surface Scattering at Grazing Incidence: Numerical Analysis of Doppler Spectrum at HF/VHF/UHF Bands

Photo from wikipedia

This paper numerically analyzes the characteristics of the Doppler spectrum at HF/VHF/UHF bands from 1D time-varying ocean-like surfaces at grazing incidence in vertical polarization mode. The rough surface is transformed… Click to show full abstract

This paper numerically analyzes the characteristics of the Doppler spectrum at HF/VHF/UHF bands from 1D time-varying ocean-like surfaces at grazing incidence in vertical polarization mode. The rough surface is transformed into a local perturbation plane which has its roughness flattened at the edges. The scattering waves include coherent reflected wave and incoherent scattering waves. The surface currents exciting the incoherent scattering waves are regarded as the unknowns which can be solved from the improved surface integral equation using the method of moments (MoM). The incident plane wave allows the incident angle to reach up to 90° (grazing incidence). Then the backscattering wave in the far field can be calculated, and the Doppler spectrum is obtained by coherent Monte-Carlo simulation. Firstly, the validity of the method is verified by comparing with the mature small perturbation method at the HF band. Then the incident wave frequency is asymptotically increased from HF to UHF, and the application range of the SPM is quantitatively evaluated in the Doppler spectrum domain. Finally, the paper focuses on analyzing the characteristics of Doppler spectrum in different bands and different sea states and comparing the influence of nonlinear ocean waves on the Doppler spectrum at different frequencies.

Keywords: grazing incidence; doppler spectrum; surface; spectrum

Journal Title: International Journal of Antennas and Propagation
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.