LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bifurcation Analysis of Composite Laminated Piezoelectric Rectangular Plate Structure in the Case of 1:2 Internal Resonance

Photo from wikipedia

In this paper, the authors study the bifurcation problems of the composite laminated piezoelectric rectangular plate structure with three bifurcation parameters by singularity theory in the case of 1:2 internal… Click to show full abstract

In this paper, the authors study the bifurcation problems of the composite laminated piezoelectric rectangular plate structure with three bifurcation parameters by singularity theory in the case of 1:2 internal resonance. The sign function is employed to the universal unfolding of bifurcation equations in this system. The proposed approach can ensure the nondegenerate conditions of the universal unfolding of bifurcation equations in this system to be satisfied. The study presents that the proposed system with three bifurcation parameters is a high codimensional bifurcation problem with codimension 4, and 6 forms of universal unfolding are given. Numerical results show that the whole parametric plane can be divided into several persistent regions by the transition set, and the bifurcation diagrams in different persistent regions are obtained.

Keywords: composite laminated; rectangular plate; laminated piezoelectric; plate structure; piezoelectric rectangular; bifurcation

Journal Title: Mathematical Problems in Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.