LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hidden Coexisting Attractors in a Fractional-Order System without Equilibrium: Analysis, Circuit Implementation, and Finite-Time Synchronization

Photo by jontyson from unsplash

In this paper, a novel three-dimensional fractional-order chaotic system without equilibrium, which can present symmetric hidden coexisting chaotic attractors, is proposed. Dynamical characteristics of the fractional-order system are analyzed fully… Click to show full abstract

In this paper, a novel three-dimensional fractional-order chaotic system without equilibrium, which can present symmetric hidden coexisting chaotic attractors, is proposed. Dynamical characteristics of the fractional-order system are analyzed fully through numerical simulations, mainly including finite-time local Lyapunov exponents, bifurcation diagram, and the basins of attraction. In particular, the system can generate diverse coexisting attractors varying with different orders, which presents ample and complex dynamic characteristics. And there is great potential for secure communication. Then electronic circuit of the fractional-order system is designed to help verify its effectiveness. What is more, taking the disturbances into account, a finite-time synchronization of the fractional-order chaotic system without equilibrium is achieved and the improved controller is proven strictly by applying finite-time stable theorem. Eventually, simulation results verify the validity and rapidness of the proposed method. Therefore, the fractional-order chaotic system with hidden attractors can present better performance for practical applications, such as secure communication and image encryption, which deserve further investigation.

Keywords: fractional order; finite time; system; system without

Journal Title: Mathematical Problems in Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.