LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Research on Vibration Reduction Design of Foundation with Entangled Metallic Wire Material under High Temperature

Photo from wikipedia

When the submarine is sailing at full speed, the power cabin has an abnormally high temperature. However, in the previous research on the vibration reduction design of the foundation, the… Click to show full abstract

When the submarine is sailing at full speed, the power cabin has an abnormally high temperature. However, in the previous research on the vibration reduction design of the foundation, the influence of high temperature on the vibration characteristics of the foundation is not taken into account. In this paper, a new composite foundation with entangled metallic wire material (EMWM) is presented to reduce the vibration of the foundation. The energy transfer path of the foundation was obtained by the power flow method, and then the layout of EMWM was determined. The optimization of the constraining layer was carried out by modal analysis. The damping performance of the composite foundation with EMWM was validated by the thermal-vibration joint test. The results show that, at room temperature, the composite foundation has remarkable vibration reduction efficiency in the middle and high-frequency bands. The maximum insertion loss can reach 15.37 dB. The insertion loss varies with the location of the excitation point. As the temperature rises to 300°C, the insertion loss in the low-frequency band was improved, and the insertion loss is not influenced by the excitation position.

Keywords: vibration reduction; vibration; foundation; high temperature

Journal Title: Shock and Vibration
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.