LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles.
Sign Up to like articles & get recommendations!
Least-Norm of the General Solution to Some System of Quaternion Matrix Equations and Its Determinantal Representations
We constitute some necessary and sufficient conditions for the system A1X1=C1, X1B1=C2, A2X2=C3, X2B2=C4, A3X1B3+A4X2B4=Cc, to have a solution over the quaternion skew field in this paper. A novel expression… Click to show full abstract
We constitute some necessary and sufficient conditions for the system A1X1=C1, X1B1=C2, A2X2=C3, X2B2=C4, A3X1B3+A4X2B4=Cc, to have a solution over the quaternion skew field in this paper. A novel expression of general solution to this system is also established when it has a solution. The least norm of the solution to this system is also researched in this article. Some former consequences can be regarded as particular cases of this article. Finally, we give determinantal representations (analogs of Cramer’s rule) of the least norm solution to the system using row-column noncommutative determinants. An algorithm and numerical examples are given to elaborate our results.
Share on Social Media:
  
        
        
        
Sign Up to like & get recommendations! 0
Related content
More Information
            
News
            
Social Media
            
Video
            
Recommended
               
Click one of the above tabs to view related content.