LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Bearing Fault Diagnosis Methodology Based on SVD and One-Dimensional Convolutional Neural Network

Photo from wikipedia

This paper constructs a novel network structure (SVD-1DCNN) based on singular value decomposition (SVD) and one-dimensional convolutional neural network (1DCNN), which takes the original signal as input to realize intelligent… Click to show full abstract

This paper constructs a novel network structure (SVD-1DCNN) based on singular value decomposition (SVD) and one-dimensional convolutional neural network (1DCNN), which takes the original signal as input to realize intelligent diagnosis of bearing faults. The output of the first convolution layer was also analyzed from the perspectives of time domain and time-frequency domain in the simulation experiment. Through qualitative analysis and quantitative analysis, it was found that the convolution kernel not only extracted the classification features of signals but also gradually highlighted the learned features in the network training process. Moreover, applying this network in fault diagnosis of bearing date provided by the Case Western Reserve University (CWRU) Bearing Data Center, it was found that the convolution kernel could also achieve the above operation. The novel network of this paper achieved a good classification effect on both the simulated signals and the measured signals.

Keywords: methodology; network; diagnosis; svd one; one dimensional; dimensional convolutional

Journal Title: Shock and Vibration
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.