LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiple Attribute Group Decision-Making Based on Power Heronian Aggregation Operators under Interval-Valued Dual Hesitant Fuzzy Environment

In this paper, we focus on new methods to deal with multiple attribute group decision-making (MAGDM) problems and a new comparison law of interval-valued dual hesitant fuzzy elements (IVDHFEs). More… Click to show full abstract

In this paper, we focus on new methods to deal with multiple attribute group decision-making (MAGDM) problems and a new comparison law of interval-valued dual hesitant fuzzy elements (IVDHFEs). More explicitly, the interval-valued dual hesitant fuzzy 2nd-order central polymerization degree ( ) function is introduced, for the case that score values of different IVDHFEs are identical. This function can further compare different IVDHFEs. Then, we develop a series of interval-valued dual hesitant fuzzy power Heronian aggregation operators, i.e., the interval-valued dual hesitant fuzzy power Heronian mean (IVDHFPHM) operator, the interval-valued dual hesitant fuzzy power geometric Heronian mean (IVDHFPGHM) operator, and their weighted forms. Some desirable properties and their special cases are discussed. These proposed operators can simultaneously reflect the interrelationship of aggregated arguments and reduce the influence of unreasonable evaluation values. Finally, two approaches for interval-valued dual hesitant fuzzy MAGDM with known or unknown weight information are presented. An illustrative example and comparative studies are given to verify the advantages of our methods. A sensitivity analysis of the decision results is analyzed with different parameters.

Keywords: dual hesitant; hesitant fuzzy; interval valued; valued dual; power

Journal Title: Mathematical Problems in Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.