Recent decades have witnessed the rapid evolution of robotic applications and their expansion into a variety of spheres with remarkable achievements. This article researches a crucial technique of robot manipulators… Click to show full abstract
Recent decades have witnessed the rapid evolution of robotic applications and their expansion into a variety of spheres with remarkable achievements. This article researches a crucial technique of robot manipulators referred to as visual servoing, which relies on the visual feedback to respond to the external information. In this regard, the visual servoing issue is tactfully transformed into a quadratic programming problem with equality and inequality constraints. Differing from the traditional methods, a gradient-based recurrent neural network (GRNN) for solving the visual servoing issue is newly proposed in this article in the light of the gradient descent method. Then, the stability proof is presented in theory with the pixel error convergent exponentially to zero. Specifically speaking, the proposed method is able to impel the manipulator to approach the desired static point while maintaining physical constraints considered. After that, the feasibility and superiority of the proposed GRNN are verified by simulative experiments. Significantly, the proposed visual servo method can be leveraged to medical robots and rehabilitation robots to further assist doctors in treating patients remotely.
               
Click one of the above tabs to view related content.