LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Soliton Molecules and Some Novel Types of Hybrid Solutions to (2 + 1)-Dimensional Variable-Coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada Equation

Photo by boliviainteligente from unsplash

Soliton molecules of the (2 + 1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation are derived by - soliton solutions and a new velocity resonance condition. Moreover, soliton molecules can become asymmetric solitons when the distance… Click to show full abstract

Soliton molecules of the (2 + 1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation are derived by - soliton solutions and a new velocity resonance condition. Moreover, soliton molecules can become asymmetric solitons when the distance between two solitons of the molecule is small enough. Finally, we obtained some novel types of hybrid solutions which are components of soliton molecules, lump waves, and breather waves by applying velocity resonance, module resonance of wave number, and long wave limit method. Some figures are presented to demonstrate clearly dynamics features of these solutions.

Keywords: caudrey dodd; coefficient caudrey; soliton molecules; dodd gibbon; dimensional variable; variable coefficient

Journal Title: Advances in Mathematical Physics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.