In this paper, we reformulate the gridless direction of arrival (DoA) estimation problem in a novel reweighted covariance fitting (CF) method. The proposed method promotes joint sparsity among different snapshots… Click to show full abstract
In this paper, we reformulate the gridless direction of arrival (DoA) estimation problem in a novel reweighted covariance fitting (CF) method. The proposed method promotes joint sparsity among different snapshots by means of nonconvex Schatten-p quasi-norm penalty. Furthermore, for more tractable and scalable optimization problem, we apply the unified surrogate for Schatten-p quasi-norm with two-factor matrix norms. Then, a locally convergent iterative reweighted minimization method is derived and solved efficiently via a semidefinite program using the optimization toolbox. Finally, numerical simulations are carried out in the background of unknown nonuniform noise and under the consideration of coprime array (CPA) structure. The results illustrate the superiority of the proposed method in terms of resolution, robustness against nonuniform noise, and correlations of sources, in addition to its applicability in a limited number of snapshots.
               
Click one of the above tabs to view related content.