LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spatiotemporal Variations of Extreme Precipitation Events in the Jinsha River Basin, Southwestern China

Photo from wikipedia

Climate extremes have attracted widespread attention for their threats to the natural environment and human society. Based on gauged daily precipitation from 1963 to 2016 in four subregions of the… Click to show full abstract

Climate extremes have attracted widespread attention for their threats to the natural environment and human society. Based on gauged daily precipitation from 1963 to 2016 in four subregions of the Jinsha River Basin (JRB), four extreme precipitation indices developed by the Expert Team on Climate Change Detection and Indices (ETCCDI) were employed to assess the spatiotemporal variations of extreme precipitation events. Results show the following: (1) Max one-day precipitation amount (RX1day), max consecutive five-day precipitation amount (RX5day), precipitation on very wet days (R95p), and number of heavy precipitation days (R10mm) showed increasing trends in four subregions except for the decline of R10mm in the southeastern and RX5day in the midsouthern. Extreme precipitation has become more intense and frequent in most parts of the JRB. (2) In space, the four extreme precipitation indices increased from the northwest to the southeast. Temporal trends of extreme precipitation showed great spatial variability. It is notable that extreme precipitation increased apparently in higher elevation areas. (3) The abrupt change of extreme precipitation in the northwestern, midsouthern, and southeastern mainly appeared in the late 1990s and the 2000s. For the midnorthern, abrupt change mainly occurred in the late 1980s. This study is meaningful for regional climate change acquaintance and disaster prevention in the JRB.

Keywords: spatiotemporal variations; jinsha river; precipitation; extreme precipitation; river basin; variations extreme

Journal Title: Advances in Meteorology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.