To analyze the distribution characteristics of voltage and current along half-wavelength transmission lines (HWTLs) in the cases with or without short circuit in the steady state, the method based on… Click to show full abstract
To analyze the distribution characteristics of voltage and current along half-wavelength transmission lines (HWTLs) in the cases with or without short circuit in the steady state, the method based on the frequency-length factor (FLF) for lossy lines is proposed. Firstly, according to the pole condition of the FLF, the distribution characteristics of power-frequency waves along HWTLs are analyzed. Then, the comprehensive effects of the system parameters and fault resistance are explored, revealing the mechanism of the power-frequency resonance caused by nonmetallic short circuit. Meanwhile, unbalanced short-circuit fault is studied by exploiting additional impedance. The results show that the distribution of the maximum value of power-frequency resonance voltage is related to the system parameters but not to the fault impedance. When a HWTL is short circuited at 2640 km∼2930 km, the resonance voltage can reach to 21 p.u. In relation to symmetrical short circuit, the resonance voltage appears at 1469 km from the short-circuit point, while the position moves towards the short-circuit point with the increase of additional impedance in asymmetrical short-circuit conditions. Additionally, the model theoretically proves that the power-frequency overvoltage induced by short circuit does not appear on a line whose length is less than 1469 km. Finally, cases are studied on PSCAD to verify the accuracy of the model.
               
Click one of the above tabs to view related content.