Virotherapy is a novel treatment for cancer, which may be delivered as a single agent or in combination with other therapies. Research studies indicated that the combination of viral therapy… Click to show full abstract
Virotherapy is a novel treatment for cancer, which may be delivered as a single agent or in combination with other therapies. Research studies indicated that the combination of viral therapy and radiation therapy has synergistic antitumor effects in in vitro and in vivo. In this paper, we proposed two models in the form of partial differential equations to investigate the spatiotemporal dynamics of tumor cells under virotherapy and radiovirotherapy. We first presented a virotherapy model and solved it numerically for different values of the parameters related to the oncolytic virus, which is administered continuously. The results showed that virotherapy alone cannot eradicate cancer, and thus, we extended the model to include the effect of radiotherapy in combination with virotherapy. Numerical investigations were carried out for three modes of radiation delivery which are constant, decaying, and periodic. The numerical results showed that radiovirotherapy leads to complete eradication of the tumor provided that the delivery of radiation is constant. Moreover, there is an optimal timing for administering radiation, as well as an ideal dose that improves the results of the treatment. The virotherapy in our model is given continuously over a certain period of time, and bolus treatment (where virotherapy is given in cycles) could be considered and compared with our results.
               
Click one of the above tabs to view related content.