The intermittence and fluctuation character of solar irradiance places severe limitations on most of its applications. The precise forecast of solar irradiance is the critical factor in predicting the output… Click to show full abstract
The intermittence and fluctuation character of solar irradiance places severe limitations on most of its applications. The precise forecast of solar irradiance is the critical factor in predicting the output power of a photovoltaic power generation system. In the present study, Model I-A and Model II-B based on traditional long short-term memory (LSTM) are discussed, and the effects of different parameters are investigated; meanwhile, Model II-AC, Model II-AD, Model II-BC, and Model II-BD based on a novel LSTM-MLP structure with two-branch input are proposed for hour-ahead solar irradiance prediction. Different lagging time parameters and different main input and auxiliary input parameters have been discussed and analyzed. The proposed method is verified on real data over 5 years. The experimental results demonstrate that Model II-BD shows the best performance because it considers the weather information of the next moment, the root mean square error (RMSE) is 62.1618 W/m2, the normalized root mean square error (nRMSE) is 32.2702%, and the forecast skill (FS) is 0.4477. The proposed algorithm is 19.19% more accurate than the backpropagation neural network (BPNN) in terms of RMSE.
               
Click one of the above tabs to view related content.