LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cat Swarm Optimization Algorithm: A Survey and Performance Evaluation

Photo from wikipedia

This paper presents an in-depth survey and performance evaluation of cat swarm optimization (CSO) algorithm. CSO is a robust and powerful metaheuristic swarm-based optimization approach that has received very positive… Click to show full abstract

This paper presents an in-depth survey and performance evaluation of cat swarm optimization (CSO) algorithm. CSO is a robust and powerful metaheuristic swarm-based optimization approach that has received very positive feedback since its emergence. It has been tackling many optimization problems, and many variants of it have been introduced. However, the literature lacks a detailed survey or a performance evaluation in this regard. Therefore, this paper is an attempt to review all these works, including its developments and applications, and group them accordingly. In addition, CSO is tested on 23 classical benchmark functions and 10 modern benchmark functions (CEC 2019). The results are then compared against three novel and powerful optimization algorithms, namely, dragonfly algorithm (DA), butterfly optimization algorithm (BOA), and fitness dependent optimizer (FDO). These algorithms are then ranked according to Friedman test, and the results show that CSO ranks first on the whole. Finally, statistical approaches are employed to further confirm the outperformance of CSO algorithm.

Keywords: survey performance; optimization; performance evaluation

Journal Title: Computational Intelligence and Neuroscience
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.