The paper addresses the mathematical study of a nonstationary continuum model describing oxygen propagation in cerebral substance. The model allows to estimate the rate of oxygen saturation and stabilization of… Click to show full abstract
The paper addresses the mathematical study of a nonstationary continuum model describing oxygen propagation in cerebral substance. The model allows to estimate the rate of oxygen saturation and stabilization of oxygen concentration in relatively large parts of cerebral tissue. A theoretical and numerical analysis of the model is performed. The unique solvability of the underlying initial-boundary value problem for a system of coupled nonlinear parabolic equations is proved. In the numerical experiment, the tissue oxygen saturation after hypoxia is analyzed for the case when a sufficient amount of oxygen begins to flow into the capillary network. A fast stabilization of the tissue oxygen concentration is demonstrated. The reliability of the results of the numerical simulation is discussed.
               
Click one of the above tabs to view related content.