LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Integrated Model to Characterize Comprehensive Stiffness of Angular Contact Ball Bearings

Photo from wikipedia

The bearing dynamic behaviors will be complicated due to the changes in the geometric sizes and relative positions of the bearing components at high speed. In this paper, based on… Click to show full abstract

The bearing dynamic behaviors will be complicated due to the changes in the geometric sizes and relative positions of the bearing components at high speed. In this paper, based on the Hertz contact theory, elastohydrodynamic lubrication (EHL) model, and Jones’ bearing theory, the comprehensive stiffness model of the angular contact ball bearing is proposed in consideration of the effects of elastic deformation, centrifugal deformation, thermal deformation, and the ball spinning motion. The influences of these factors on bearing dynamic stiffness are investigated in detail. The calculation results show that the centrifugal deformation and thermal deformation increase with the increase in rotation speed. When the centrifugal deformation and thermal deformation are considered, the bearing radial contact stiffness increases as the speed increases, whereas the axial contact stiffness and the angular contact stiffness decrease. When the deformations and the EHL are all considered, the comprehensive bearing stiffness decreases with the increasing speed. It is also found that the spinning motion of the ball causes the comprehensive bearing stiffness to increase.

Keywords: stiffness; angular contact; deformation; model; contact; ball

Journal Title: Mathematical Problems in Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.