LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study on the Method of Fundus Image Generation Based on Improved GAN

Photo from wikipedia

With the continuous development of deep learning, the performance of the intelligent diagnosis system for ocular fundus diseases has been significantly improved, but during the system training process, problems like… Click to show full abstract

With the continuous development of deep learning, the performance of the intelligent diagnosis system for ocular fundus diseases has been significantly improved, but during the system training process, problems like lack of fundus samples and uneven sample distribution (the number of disease samples is much smaller than the number of normal samples) have become increasingly prominent. In view of the previous issues, this paper proposes a method for generating fundus images based on “Combined GAN” (Com-GAN), which can generate both normal fundus images and fundus images with hard exudates, so that the sample distribution can be more even, while the fundus data are expanded. First, this paper uses existing images to train a Com-GAN, which consists of two subnetworks: im-WGAN and im-CGAN; then, it uses the trained model to generate fundus images, then performs qualitative and quantitative evaluation on the generated images, and adds the images to the original image set to expand the datasets; finally, based on this expanded training set, it trains the hard exudate detection system. The expanded datasets effectively improve the generalization ability of the system on the public datasets DIARETDB1 and e-ophtha EX, thereby verifying the effectiveness of the proposed method.

Keywords: method fundus; image; system; fundus images; fundus; study method

Journal Title: Mathematical Problems in Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.