LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic Knowledge Inference Based on Bayesian Network Learning

On the basis of studying datasets of students' course scores, we constructed a Bayesian network and undertook probabilistic inference analysis. We selected six requisite courses in computer science as Bayesian… Click to show full abstract

On the basis of studying datasets of students' course scores, we constructed a Bayesian network and undertook probabilistic inference analysis. We selected six requisite courses in computer science as Bayesian network nodes. We determined the order of the nodes based on expert knowledge. Using 356 datasets, the K2 algorithm learned the Bayesian network structure. Then, we used maximum a posteriori probability estimation to learn the parameters. After constructing the Bayesian network, we used the message-passing algorithm to predict and infer the results. Finally, the results of dynamic knowledge inference were presented through a detailed inference process. In the absence of any evidence node information, the probability of passing other courses was calculated. A mathematics course (a basic professional course) was chosen as the evidence node to dynamically infer the probability of passing other courses. Over time, the probability of passing other courses greatly improved, and the inference results were consistent with the actual values and can thus be visualized and applied to an actual school management system.

Keywords: knowledge inference; network; dynamic knowledge; bayesian network

Journal Title: Mathematical Problems in Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.