This paper presents a prognostic method for RUL (remaining useful life) prediction based on EMD (empirical mode decomposition)-ESN (echo state network). The combination method adopts EMD to decompose the multisensor… Click to show full abstract
This paper presents a prognostic method for RUL (remaining useful life) prediction based on EMD (empirical mode decomposition)-ESN (echo state network). The combination method adopts EMD to decompose the multisensor time series into a bunch of IMFs (intrinsic mode functions), which are then predicted by ESNs, and the outputs of each ESN are summarized to obtain the final prediction value. The EMD can decompose the original data into simpler portions and during the decomposition process, much noise is filtered out and the subsequent prediction is much easier. The ESN is a relatively new type of RNN (recurrent neural network), which substitutes the hidden layers with a reservoir remaining unchanged during the training phase. The characteristic makes the training time of ESN is much shorter than traditional RNN. The proposed method is applied to the turbofan engine datasets and is compared with LSTM (Long Short-Term Memory) and ESN. Extensive experimental results show that the prediction performance and efficiency are much improved by the proposed method.
               
Click one of the above tabs to view related content.