LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An LQG Controller Based on Real System Identification for an Active Hydraulically Interconnected Suspension

Photo from wikipedia

Rollover prevention is always one of the research hotspots in vehicle design. Active hydraulically interconnected suspension (HIS) is a promising technology to reduce vehicle body roll angle caused by different… Click to show full abstract

Rollover prevention is always one of the research hotspots in vehicle design. Active hydraulically interconnected suspension (HIS) is a promising technology to reduce vehicle body roll angle caused by different driving inputs and road conditions. This paper proposes a novel actuator of the active HIS system. The actuator consists of two cylinders, a ball screw, and only one motor. The actuator proposed can reduce the number of motors needed in the system. Meanwhile, forced vibration identification (FVI) is used to identify the transfer function of a half-car physical model and a Kalman state observer is applied to eliminate the influence of sensor noise. The FVI method can eliminate most model uncertainties and hidden variables. Aggressive and moderate optimal linear quadratic Gaussian (LQG) methods are implemented to control the motion of the vehicle body based on the identified transfer function of the physical model. The performance of an active HIS system with an aggressive and moderate LQG controller is compared with that of a passive HIS system. The effectiveness of the LQG controller is validated by simulation and experimental results. Also, the obtained results show that the stabilization speed of the active HIS system is 20% faster than that of the passive HIS system and the roll angle can be reduced up to 55% than that of the passive HIS system.

Keywords: hydraulically interconnected; active hydraulically; system; lqg controller

Journal Title: Mathematical Problems in Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.