Spectral methods have previously been applied to analyze a multitude of vibration and acoustic problems due to their high computational efficiency. However, their application to interior structural acoustics systems has… Click to show full abstract
Spectral methods have previously been applied to analyze a multitude of vibration and acoustic problems due to their high computational efficiency. However, their application to interior structural acoustics systems has been limited to the analysis of a single plate coupled to a fluid-filled cavity. In this work, a general multidomain spectral approach is proposed for the eigenvalue and steady-state vibroacoustic analyses of interior structural-acoustic problems with discontinuous boundaries. The unified formulation is derived by means of a generalized variational principle in conjunction with the spectral discretization procedure. The established framework enables one to easily accommodate complex systems consisting of both a structure assembly and a built-up cavity with moderate geometric complexities and to effectively analyze vibroacoustic behaviors with sufficient accuracy at relatively high frequencies. Two practical examples are chosen to demonstrate the flexibility and efficiency of the proposed formulation: a built-up cavity backed by an assembly of multiple connected plates with arbitrary orientations and a thick irregular elastic solid coupled with a heavy acoustic medium. Comparison to finite element simulations and convergence studies for these two examples illustrate the considerable computational advantage of the method as compared to finite element procedures.
               
Click one of the above tabs to view related content.