LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling for Micro Traffic Flow with the Consideration of Lateral Vehicle’s Influence

Photo from wikipedia

In order to make the car-following model describe the driving behavior of vehicle on urban road more accurately, existing car-following models are simulated using measured traffic data. According to the… Click to show full abstract

In order to make the car-following model describe the driving behavior of vehicle on urban road more accurately, existing car-following models are simulated using measured traffic data. According to the analysis of the simulation result, two new improved car-following models based on the optimal velocity model (OVM) are proposed in this paper. The lateral vehicle’s influence is introduced as the influence factor of driving behavior. By using of linear stability analysis, stability conditions of improved car-following models are obtained. Nonlinear analysis is carried out to investigate the traffic performances near the critical point. The result of numerical simulation indicates that stability of traffic flow is under the influence from lateral vehicle; the lesser the influence, the greater the stability. New cooperative car-following models are verified by the traffic flow data collected in Xi’an city. It is shown that compared with the optimal velocity model, the simulation result of the second cooperative model, respectively, gets 62.89% unbiased variance reduction, 66.39% maximum absolute error reduction, and 33.4% minimum absolute error reduction. Therefore, the second cooperative model is more suitable to describe the vehicle’s actual behavior in car-following state.

Keywords: traffic; vehicle; car following; influence; lateral vehicle

Journal Title: Journal of Advanced Transportation
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.