LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of Feature Fusion Using Coaxial Vibration Signal for Diagnosis of Rolling Element Bearings

Photo from wikipedia

The research of rolling element bearings (REBs) fault diagnosis based on single sensor vibration signal analysis is very common. However, the information provided by an individual sensor is very limited,… Click to show full abstract

The research of rolling element bearings (REBs) fault diagnosis based on single sensor vibration signal analysis is very common. However, the information provided by an individual sensor is very limited, and the robustness of the system is poor. In this paper, a novel fault diagnosis method based on coaxial vibration signal feature fusion (CVSFF) is proposed to fully analyze the multisensor information of the system and build a more reliable diagnostic system. An ensemble empirical mode decomposition (EEMD) method is used to decompose the original vibration signal into a number of intrinsic mode functions (IMFs). Then the autocorrelation analysis is introduced to reduce the random noise remaining in IMFs. After that, the Rényi entropy is calculated as the feature of bearings. Finally, the features of coaxial vibration signal are fused by a multiple-kernel learning support vector machine (MKL-SVM) to classify bearing conditions. In order to verify the effectiveness of the CVSFF method in REB diagnosis, eight data sets from the Case Western Reserve University Bearing Data Center are selected. The fault classification results demonstrate that the proposed approach is a valuable tool for bearing faults detection, and the fused feature from coaxial sensors improves fault classification accuracy for REBs.

Keywords: diagnosis; vibration; coaxial vibration; element bearings; vibration signal; rolling element

Journal Title: Shock and Vibration
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.