LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mathematical Modelling and Dynamic Analysis of an Offshore Drilling Riser

Photo from wikipedia

In this paper, a dynamic model of an offshore drilling riser is developed based on the Hamilton principle. The developed dynamic model is transformed into a finite element model by… Click to show full abstract

In this paper, a dynamic model of an offshore drilling riser is developed based on the Hamilton principle. The developed dynamic model is transformed into a finite element model by introducing an approximate solution which chooses the Hermite cubic interpolation function of bending beam element as the shape function. Thereafter, the standard Newmark integration is applied to numerically simulate the dynamic responses of offshore drilling risers with varied system parameters, including the length of riser, top tension ratio, and buoyant factor. Based on the results of numerical simulation, under the influences of sea wind, sea current, and the periodic excitation of sea wave, the offshore drilling riser experiences a fast lateral deflection phase in the beginning, a reciprocating deflection phase in the following long duration, and then, a periodic oscillation when it reaches the dynamic stable condition, respectively. The riser system working in deeper water with a higher top tension ratio and a lower buoyant factor shows more controllable vibration and less lateral deflection.

Keywords: modelling dynamic; drilling riser; mathematical modelling; dynamic analysis; offshore drilling

Journal Title: Shock and Vibration
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.