LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental Study of the Rock Mechanism under Coupled High Temperatures and Dynamic Loads

Photo from wikipedia

With the development of modern society, geomaterials are widely used for infrastructure. These materials often experience dynamic loading and high temperature, which significantly influences the mechanical behaviour of the materials.… Click to show full abstract

With the development of modern society, geomaterials are widely used for infrastructure. These materials often experience dynamic loading and high temperature, which significantly influences the mechanical behaviour of the materials. This research focuses on the effects of the loading rate and high temperature on rock mass in terms of rock mechanism. A state-of-the-art review of rock mechanism under coupled dynamic loads and high temperatures is conducted first. The rock mechanism under static and dynamic loads is introduced. The marble is taken as the rock material for the test, while the split-Hopkinson pressure bar system is used to take the dynamic tests. In addition, the principles of the split-Hopkinson pressure bar are introduced to obtain the dynamic parameters. The fracture patterns of the uniaxial compressive strength test and the Brazilian tensile strength test are obtained and compared with those well documented in the literature. Some curves for the relationships among the loading rate, strain, temperature, compressive or tensile strengths are explained. It is conduced that with the increase of the loading rate, the rock strength increases, while with the increase of the temperature, the rock strength decreases.

Keywords: high temperatures; rock mechanism; mechanism coupled; dynamic loads; rock

Journal Title: Advances in Civil Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.