LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Damage-Tolerant Task Assignment Algorithm for UAV Swarm in Confrontational Environments

Photo from wikipedia

As Unmanned Aerial Vehicles (UAVs) are widely used in many applications, a lot of military missions in confrontational environments are being undertaken by UAV swarm rather than human beings due… Click to show full abstract

As Unmanned Aerial Vehicles (UAVs) are widely used in many applications, a lot of military missions in confrontational environments are being undertaken by UAV swarm rather than human beings due to its advantages. In confrontational environments, the reliability and availability of UAV swarm would be the major concern because of UAVs’ vulnerability, so damage-tolerant task assigning algorithms are of great importance. In this paper, we come up with a novel damage-tolerant framework for assigning real-time tasks to UAVs with dynamical states in confrontational environments. Different from existing scheduling methods, we not only assign tasks but also back up copies of tasks to UAVs when needed, to promote reliability. Meanwhile, we adopt an overlapping mechanism, including Backup-Primary overlapping and Backup-Backup overlapping, in assignment to save the limited swarm resources. On the basis of the damage-tolerant and overlapping mechanism, for the first time, we propose a new damage-tolerant task assignment algorithm named DTTA, aiming at promoting the task success probability. Extensive experiments are conducted based on random synthetic workloads to compare DTTA with three baseline algorithms. The experimental results indicate that DTTA can efficiently promote the probability of tasks’ success without affecting the effectiveness of swarms in confrontational environments.

Keywords: tolerant task; uav swarm; damage tolerant; confrontational environments

Journal Title: International Journal of Aerospace Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.