Mitochondria are cytosolic organelles essential for cellular function and survival. The function of mitochondria is maintained by mitochondrial quality control systems including mitochondrial fission and fusion to adapt the altered… Click to show full abstract
Mitochondria are cytosolic organelles essential for cellular function and survival. The function of mitochondria is maintained by mitochondrial quality control systems including mitochondrial fission and fusion to adapt the altered environment and mitophagy for removal of damaged mitochondria. Mitochondrial dysfunction is closely involved in aging-related diseases. Intervertebral disc (IVD) degeneration, an aging-associated process, is the major contributor to low back pain. Growing evidence has suggested that the mitochondrial function in IVD cells is severely compromised during the degenerative process of IVD, and dysfunctional mitochondria along with impaired mitochondrial dynamics and mitophagy cause a series of cascade reactions that have been implicated in increased oxidative stress, senescence, matrix catabolism, and apoptosis of IVD cells, thereby contributing to the degeneration of IVD. Accordingly, therapies that target mitochondrial dysfunction and related mechanisms, such as ROS generation, mitophagy, and specific molecules and signaling, hold great promise. The present review summarizes the current state of the role of mitochondrial dysfunction in the pathophysiology of IVD degeneration and potential therapeutic strategies that could be developed.
               
Click one of the above tabs to view related content.