LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction and Aerodynamic Analysis of Interior Noise and Wind Drag Generated by the Outside Rear-View Mirror for Commercial Vehicles

Photo from wikipedia

The outside rear-view mirror (OSRVM) is installed on the vehicle’s surface, which causes unwanted aerodynamic noise and wind drag during driving. It is important to use simulation methods to predict… Click to show full abstract

The outside rear-view mirror (OSRVM) is installed on the vehicle’s surface, which causes unwanted aerodynamic noise and wind drag during driving. It is important to use simulation methods to predict the performance of aerodynamic noise and wind drag of commercial vehicles due to the OSRVM. Considering the wind drag of the OSRVM, a combinational simulation strategy is employed to calculate external flow and interior acoustic fields of commercial vehicles, respectively. The flow field is computed a priori with an incompressible flow solver. The acoustic field was then computed based on the information extracted from the CFD solver. To obtain the interior noise level at the driver’s ears, a vibroacoustic model is used to calculate the response of the window glass structure and interior cavities, where the unsteady aerodynamic pressure loading on the two side windows’ surface is treated as the acoustic source field. The paper provides flow field and acoustic simulations for three OSRVM configuration models. The results are compared to data obtained in road sliding test measurement on the commercial vehicle. The accuracy of the hybrid simulation method is proved, and the comparative analyses verify that the OSRVM B model dramatically reduces the interior noise and wind drag of commercial vehicles.

Keywords: noise wind; interior noise; wind drag; noise; commercial vehicles

Journal Title: Shock and Vibration
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.