LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ensemble Classifiers and Feature-Based Methods for Structural Damage Assessment

In this paper, a new structural damage detection framework is proposed based on vibration analysis and pattern recognition, which consists of two stages: (1) signal processing and feature extraction and… Click to show full abstract

In this paper, a new structural damage detection framework is proposed based on vibration analysis and pattern recognition, which consists of two stages: (1) signal processing and feature extraction and (2) damage detection by combining the classification result. In the first stage, discriminative features were extracted as a set of proposed descriptors related to the statistical moment of the spectrum and spectral shape properties using five competitive time-frequency techniques including fast S-transform, synchrosqueezed wavelet transform, empirical wavelet transform, wavelet transform, and short-time Fourier transform. Then, forward feature selection was employed to remove the redundant information and select damage features from vibration signals. By applying different classifiers, the capability of the feature sets for damage identification was investigated. In the second stage, ensemble-based classifiers were used to improve the overall performance of damage detection based on individual classifiers and increase the number of detectable damages. The proposed framework was verified by a suite of numerical and full-scale studies (a bridge health monitoring benchmark problem, IASC-ASCE SHM benchmark structure, and a cable-stayed bridge in China). The results showed that the proposed framework was superior to the existing single classifier and could assess the damage with reduced false alarms.

Keywords: damage detection; structural damage; ensemble classifiers; wavelet transform; damage; classifiers feature

Journal Title: Shock and Vibration
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.