Affine matrix rank minimization problem is a famous problem with a wide range of application backgrounds. This problem is a combinatorial problem and deemed to be NP-hard. In this paper,… Click to show full abstract
Affine matrix rank minimization problem is a famous problem with a wide range of application backgrounds. This problem is a combinatorial problem and deemed to be NP-hard. In this paper, we propose a family of fast band restricted thresholding (FBRT) algorithms for low rank matrix recovery from a small number of linear measurements. Characterized via restricted isometry constant, we elaborate the theoretical guarantees in both noise-free and noisy cases. Two thresholding operators are discussed and numerical demonstrations show that FBRT algorithms have better performances than some state-of-the-art methods. Particularly, the running time of FBRT algorithms is much faster than the commonly singular value thresholding algorithms.
               
Click one of the above tabs to view related content.