The microclimate affects the quality and efficiency of outdoor spaces of campuses, especially in the cold regions of China. In this paper, we propose a multiobjective optimization method to improve… Click to show full abstract
The microclimate affects the quality and efficiency of outdoor spaces of campuses, especially in the cold regions of China. In this paper, we propose a multiobjective optimization method to improve the thermal comfort of the outdoor environment of university campuses in severe cold regions. We used morphology data from 41 universities in the cold region of China to create a layout prototype of a campus cluster. Multiobjective optimization was used, and the effects of sunlight, solar radiation, and wind on the outdoor thermal comfort in winter were considered. A parameterized platform was established for the multiobjective optimization of the microclimate of the simplified model of the campus. A multiobjective optimization based on an evolutionary algorithm was used to obtain 108 groups of nondominated solutions. The optimum outdoor microclimate of the campus was obtained at a building density of 0.21–0.23, a plot ratio of 1.51–1.88, and a road width of 11–14 m. We recommend that buildings are designed based on the wind direction in winter and that the space between buildings is increased.
               
Click one of the above tabs to view related content.