LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural Behavior of Nanocoated Oil Palm Shell as Coarse Aggregate in Lightweight Concrete

Oil palm shells (OPS) are mechanical waste that is utilized as coarse aggregates in lightweight concrete. These OPS have shape and strength like conventional aggregates yet the substantial made with… Click to show full abstract

Oil palm shells (OPS) are mechanical waste that is utilized as coarse aggregates in lightweight concrete. These OPS have shape and strength like conventional aggregates yet the substantial made with these OPS invigorates a limit of 18 MPa. The characteristic strength which must be utilized in structures is seen to be around 25 MPa to 30 MPa. Considering the strength as one of the boundaries for design to be sturdy, the OPS are surface-covered with nanosilane compound. This nanosilane covering goes about as infill on the outside of the aggregates and holds the concrete paste as traditional cement. Operations are permeable in nature; their inner construction has permeable design which makes the aggregates frail. Nanosilane coatings go about as holding between the concrete stage and aggregate stage and hold the substantial solid. In the present examination, mechanical and underlying conduct of nanocovered oil palm shell lightweight concrete is contrasted with that of regular cement. Nanocovered oil palm shell lightweight substantial shows comparative strength as customary cement and decrease in nonsustainable wellspring of energy in oil palm shell lightweight concrete. Supplanting of customary cement with oil palm shell concrete addresses the modern waste which can be utilized for making concrete solid and solid. Morphology and material portrayal of oil palm shell and ordinary aggregates are investigated.

Keywords: palm shell; lightweight concrete; oil; oil palm

Journal Title: Journal of Nanomaterials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.