LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Analysis of Relationship between the Microfracture Features and Mineral Morphology of Granite

Photo by maxgotts from unsplash

Using the techniques of X-ray diffraction, polarizing microscopy, uniaxial compression, and scanning electron microscopy (SEM), the relationships between the microfracture features and mineral morphology of granite were studied. The results… Click to show full abstract

Using the techniques of X-ray diffraction, polarizing microscopy, uniaxial compression, and scanning electron microscopy (SEM), the relationships between the microfracture features and mineral morphology of granite were studied. The results showed that feldspar, quartz, and biotite are the main components of the granite samples in this study. Biotite has a self-shaped flake structure with perfect cleavage. K-feldspar has a lattice double crystal structure with two groups of cleavage. Plagioclase has a semi-self-shaped plate structure with two groups of cleavage. Quartz is prismatic or granular and exhibits noncleavage. The microfracture features of biotite are flaky with exfoliation, and flake cleavage fracture is mainly determined by its peculiar flaky cleavage. Feldspar (K-feldspar and plagioclase) is plate, layered, or two groups of cleavage and is also mainly determined by its peculiar two groups of cleavage. The microfracture features of quartz are highly irregular, with many randomly distributed intergranular and transgranular cracks, small particles or granule bulges, similar to quartz crystal, and this is due to the noncleavage feature of quartz itself. It is demonstrated that microfractures are preferentially ruptured along cleavage planes for these granite minerals under the action of external forces.

Keywords: microfracture features; features mineral; microfracture; cleavage; microscopy; mineral morphology

Journal Title: Advances in Civil Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.