This paper presents the development of wind power prediction models for a wind farm in Sri Lanka using an artificial neural network (ANN), multiple linear regression (MLR), and power regression… Click to show full abstract
This paper presents the development of wind power prediction models for a wind farm in Sri Lanka using an artificial neural network (ANN), multiple linear regression (MLR), and power regression (PR) techniques. Power generation data over five years since 2015 were used as the dependent variable in modeling, while the corresponding wind speed and ambient temperature values were used as independent variables. Variation of these three variables over time was analyzed to identify monthly, seasonal, and annual patterns. The monthly patterns are coherent with the seasonal monsoon winds exhibiting little annual variation, in the absence of extreme meteorological changes during the period of 2015–2020. The correlation within each pair of variables was also examined by applying statistical techniques, which are presented in terms of Pearson’s and Spearman’s correlation coefficients. The impact of unit increase (or decrease) in the wind speed and ambient temperature around their mean values on the output power was also quantified. Finally, the accuracy of each model was evaluated by means of the correlation coefficient, root mean squared error (RMSE), bias, and the Nash number. All the models demonstrated acceptable accuracy with correlation coefficient and Nash number closer to 1, very low RMSE, and bias closer to 0. Although the ANN-based model is the most accurate due to advanced features in machine learning, it does not express the generated power output in terms of the independent variables. In contrast, the regression-based statistical models of MLR and PR are advantageous, providing an insight into modeling the power generated by the other wind farms in the same region, which are influenced by similar climate conditions.
               
Click one of the above tabs to view related content.