In this study, we use the strong motion records and seismic intensity data from 11 moderate-to-strong earthquakes in the mainland of China since 2008 to develop new conversion equations between… Click to show full abstract
In this study, we use the strong motion records and seismic intensity data from 11 moderate-to-strong earthquakes in the mainland of China since 2008 to develop new conversion equations between seismic intensity and peak ground motion parameters. Based on the analysis of the distribution of the dataset, the reversible conversion relationships between modified Mercalli intensity (MMI) and peak ground acceleration (PGA), peak ground velocity (PGV), and pseudo-spectral acceleration (PSA) at natural vibration periods of 0.3 s, 1.0 s, 2.0 s, and 3.0 s are obtained by using the orthogonal regression. The influence of moment magnitude, hypocentral distance, and hypocentral depth on the residuals of conversion equations is also explored. To account for and eliminate the trends in the residuals, we introduce a magnitude-distance-depth correction term and obtain the improved relationships. Furthermore, we compare the results of this study with previously published works and analyze the regional dependence of conversion equations. To quantify the regional variations, a regional correction factor for China, suitable for adjustment of global relationships, has also been estimated.
               
Click one of the above tabs to view related content.