LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bearing Damage Detection of a Bridge under the Uncertain Conditions Based on the Bayesian Framework and Matrix Perturbation Method

Photo from wikipedia

The bearing of a bridge, as a critical component, is important in the force transformation of the superstructure; however, due to the service condition and repeated impact load, the bearing… Click to show full abstract

The bearing of a bridge, as a critical component, is important in the force transformation of the superstructure; however, due to the service condition and repeated impact load, the bearing is prone to be damaged but difficult to detect the damage; the present research has few studies that focused on the damage detection of the structural bearing. Meanwhile, practical engineering is always surrounded by variational environmental conditions, and sometimes, the element and bearing damage both exist in the structure. Thus, these uncertain conditions all cause inaccurate damage identification results using the vibration-based damage detection method. In order to detect the damage of the structural bearing and improve the precision, firstly, the structural dynamic characteristic equation considering uncertain conditions has been deduced; then, a damage detection framework constructed by the Bayesian theory and perturbation method has been developed in this article; a numerical example of an 8-span concrete continuous beam and a practical example of I-40 steel-concrete composite bridge are utilized to validate the feasibility of the proposed method, and single type and two types of damage cases are studied. The outcomes demonstrate that the damage of structural elements and bearings can be detected with high accuracy. The proposed method is of great applicability and good potential.

Keywords: damage detection; bridge; method; damage; uncertain conditions

Journal Title: Shock and Vibration
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.