LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Biocompatible Herbal Extract-Loaded Hydrogel for Acne Treatment and Repair

Photo by lisahobbs from unsplash

A novel herbal extract-loaded gel containing several biofunctional extracts, including green tea, Zingiber officinale Rosc, Phyllanthus emblica, and salicylic acid, was developed for acne vulgaris. These natural raw materials were… Click to show full abstract

A novel herbal extract-loaded gel containing several biofunctional extracts, including green tea, Zingiber officinale Rosc, Phyllanthus emblica, and salicylic acid, was developed for acne vulgaris. These natural raw materials were blended with suitable dosages of gelatin and carboxymethyl cellulose (CMC) to produce a biocompatible herbal gel. The physical chemistry properties of the hydrogel were determined by Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), rheometry, and scanning electron microscopy (SEM), and the hydrogel showed good mechanical and morphological characteristics. The herbal extract-loaded hydrogel mimicked extracellular matrix properties and showed good antioxidant and anti-inflammatory properties and various advantages, serving as a potential wound dressing material because of its high moisture retention ability, wound exudate absorption behavior, and biocompatibility. It exhibited moderate-high antioxidative and anti-inflammatory qualities that were important for dermis wound closure. The clinical trial results showed that most patients experienced moderate to high healing rates, and four of twenty-four individuals (16.67%) had recovery area ratios greater than 80%. This herbal extract-loaded hydrogel has effective ingredients and excellent mechanical properties as a bioactive dressing agent for acne treatment.

Keywords: herbal extract; biocompatible herbal; extract loaded; loaded hydrogel; acne treatment

Journal Title: Oxidative Medicine and Cellular Longevity
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.