LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

AdaCN: An Adaptive Cubic Newton Method for Nonconvex Stochastic Optimization

Photo by isaw from unsplash

In this work, we introduce AdaCN, a novel adaptive cubic Newton method for nonconvex stochastic optimization. AdaCN dynamically captures the curvature of the loss landscape by diagonally approximated Hessian plus… Click to show full abstract

In this work, we introduce AdaCN, a novel adaptive cubic Newton method for nonconvex stochastic optimization. AdaCN dynamically captures the curvature of the loss landscape by diagonally approximated Hessian plus the norm of difference between previous two estimates. It only requires at most first order gradients and updates with linear complexity for both time and memory. In order to reduce the variance introduced by the stochastic nature of the problem, AdaCN hires the first and second moment to implement and exponential moving average on iteratively updated stochastic gradients and approximated stochastic Hessians, respectively. We validate AdaCN in extensive experiments, showing that it outperforms other stochastic first order methods (including SGD, Adam, and AdaBound) and stochastic quasi-Newton method (i.e., Apollo), in terms of both convergence speed and generalization performance.

Keywords: method nonconvex; cubic newton; adaptive cubic; newton method; newton

Journal Title: Computational Intelligence and Neuroscience
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.