LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Planar Wide-Frequency Vibration Characteristics of Heavy-Load Radial Tires

Photo from wikipedia

This paper investigates the planar wide-frequency vibration characteristics of heavy-load radial tires with a large aspect ratio. A proposed tire model with a piecewise flexible beam on an elastic foundation… Click to show full abstract

This paper investigates the planar wide-frequency vibration characteristics of heavy-load radial tires with a large aspect ratio. A proposed tire model with a piecewise flexible beam on an elastic foundation is investigated and validated using experimental modal analysis and theoretical modeling method. The reproducibility of frequency response functions below 400 Hz is discussed. The experimental modal analysis particularly assesses the coupling of features across the circumferential and cross-sectional directions of heavy-load radial tire carcass. Piecewise circumferential modal characteristics were investigated experimentally, leading to the suggestion of a piecewise flexible beam on an elastic tire foundation. Using a genetic algorithm (GA), the structural parameters EI, , and kr and damping coefficients and cr for the proposed tire model are identified, and the piecewise transfer functions and the planar transfer functions for a heavy-load radial tire are compared with planar hammer test. Experimental and theoretical results show the following: (1) the sectional vibration characteristics for a heavy-load radial tire with a large aspect ratio result from the cross-sectional vibration of the tire carcass; (2) the piecewise transfer function is mainly influenced by the circumferential vibration of the flexible carcass, and this is consistent with a model where a flexible beam is placed on an elastic tire foundation; (3) the analytical transfer functions calculated for the proposed tire model, drawing on the identified structural parameters and damping coefficients, agree well with the experimental results.

Keywords: tire; load radial; heavy load; characteristics heavy; vibration characteristics

Journal Title: Mathematical Problems in Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.