LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ground Response and Mining-Induced Stress in Longwall Panel of a Kilometer-Deep Coal Mine

Photo from wikipedia

In order to improve ground control of the longwall mining, ground response and mining-induced stress in the longwall panel of a kilometer-deep coal mine are investigated in this study. Field… Click to show full abstract

In order to improve ground control of the longwall mining, ground response and mining-induced stress in the longwall panel of a kilometer-deep coal mine are investigated in this study. Field measurements on abutment stress, roof displacement, and fracture development indicate that the region influenced by the longwall mining reaches 150 m ahead of the longwall face. Failure scope of the coal seam, where mining-induced fractures are well developed, ranges from 10 to 13 m inward the face line. Vertical stress concentration coefficient reaches 2.2. Based on the field measurements, a numerical model is moreover developed and utilized to examine the response of the principal stress to the longwall mining. The concentration coefficient, peak point location, and influence scope of the principal stress gradually become stable with an increase in face advancement. Regarding the major principal stress, the concentration coefficient and influence scope are 2.4 and 152 m, respectively, and the peak point locates 13 m inward the face line, which are consistent with the field measurements. With respect to the minor principal stress, the referred coefficient and scope are 1.5 and 172 m, respectively, and its peak point location is 21 m ahead of the face line. The major principal stress in the coal seam rotates from vertical to horizontal direction in the vertical plane parallel with face advance direction. The maximum rotation angle reaches 20°. The minor principal stress first rotates into the referred vertical plane and then it rotates from horizontal to vertical direction at the same speed with the major principal stress in the same plane. Rotation angle of the principal stress in roof strata is greatly enlarged, the rotation trace of which is influenced by the longwall mining and vertical distance above the seam. Based on the relation between rotation trace of the principal stress and face advance direction, the influence of stress rotation on the stability of roof structure is discussed.

Keywords: principal stress; stress; coal; face; mining induced

Journal Title: Shock and Vibration
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.