LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Shaking Table Test of High Pier and Small Radius Curved Bridge under Multi-point Excitation

Photo from wikipedia

The non-uniform stratum and uneven surface have the complicated seismic spatial variability. The seismic response of high pier and small radius curved bridge caused by the seismic specificity of this… Click to show full abstract

The non-uniform stratum and uneven surface have the complicated seismic spatial variability. The seismic response of high pier and small radius curved bridge caused by the seismic specificity of this kind of terrain has not been systematically studied. According to the multi-point excitation theory of long-span structures and the similar theory of shaking table test in model structures, a high pier with small radius curved girder bridge was used as the research object. The shaking table test of real bridge model was carried out to study the seismic response laws of this kind of bridge under multi-point excitation. The results show that the designed seismic wave expansion device can meet the test requirements. The frequency of the model structure decreases rapidly and the damping ratio increases during the whole test process. The local terrain effect amplifies the seismic response of high pier and small radius curved bridge. The seismic response of high pier and small radius curved bridge is affected by different frequency spectrum seismic waves, and there is a big difference. Based on the above results, the impact of multi-point excitation should be considered in seismic design of high pier with small radius curved bridge.

Keywords: high pier; bridge; small radius; pier small; radius curved

Journal Title: Advances in Civil Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.