LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Face Super-Resolution Method Based on Parallel Imaging and OpenVINO

Photo from wikipedia

Face image super-resolution refers to recovering a high-resolution face image from a low-resolution one. In recent years, due to the breakthrough progress of deep representation learning for super-resolution, the study… Click to show full abstract

Face image super-resolution refers to recovering a high-resolution face image from a low-resolution one. In recent years, due to the breakthrough progress of deep representation learning for super-resolution, the study of face super-resolution has become one of the hot topics in the field of super-resolution. However, the performance of these deep learning-based approaches highly relies on the scale of training samples and is limited in efficiency in real-time applications. To address these issues, in this work, we introduce a novel method based on the parallel imaging theory and OpenVINO. In particular, inspired by the methodology of learning-by-synthesis in parallel imaging, we propose to learn from the combination of virtual and real face images. In addition, we introduce a center loss function borrowed from the deep model to enhance the robustness of our model and propose to apply OpenVINO to speed up the inference. To the best of our knowledge, it is the first time to tackle the problem of face super-resolution based on parallel imaging methodology and OpenVINO. Extensive experimental results and comparisons on the publicly available LFW, WebCaricature, and FERET datasets demonstrate the effectiveness and efficiency of the proposed method.

Keywords: resolution; methodology; super resolution; face super; parallel imaging

Journal Title: Mathematical Problems in Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.