In this paper, the boundary value inverse problem related to the generalized Burgers–Fisher and generalized Burgers–Huxley equations is solved numerically based on a spline approximation tool. B-splines with quasilinearization and… Click to show full abstract
In this paper, the boundary value inverse problem related to the generalized Burgers–Fisher and generalized Burgers–Huxley equations is solved numerically based on a spline approximation tool. B-splines with quasilinearization and Tikhonov regularization methods are used to obtain new numerical solutions to this problem. First, a quasilinearization method is used to linearize the equation in a specific time step. Then, a linear combination of B-splines is used to approximate the largest order of derivatives in the equation. By integrating from this linear combination, some approximations have been obtained for each of the functions and derivatives with respect to time and space. The boundary and additional conditions of the problem are also applied in these approximations. The Tikhonov regularization method is used to solve the system of linear equations using noisy data. Several numerical examples are provided to illustrate the accuracy and efficiency of the method.
               
Click one of the above tabs to view related content.