LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of the Bayesian Model Averaging in Analyzing Freeway Traffic Incident Clearance Time for Emergency Management

Photo from wikipedia

Identifying the influential factors in incident duration is important for traffic management agency to mitigate the impact of traffic incidents on freeway operation. Previous studies have proposed a variety of… Click to show full abstract

Identifying the influential factors in incident duration is important for traffic management agency to mitigate the impact of traffic incidents on freeway operation. Previous studies have proposed a variety of approaches to determine the significant factors for traffic incident clearance time. These methods commonly select a single “true” model among a majority of alternative models based on some model selection criteria. However, the conventional methods generally neglect the uncertainty related to the choice of models. This paper proposes a Bayesian Model Averaging (BMA) model to account for model uncertainty by averaging all plausible models using posterior probability as the weight. The BMA model is used to analyze the 2,584 freeway incident records obtained from I-5 corridor in Seattle, WA, USA. The results show that the BMA approach has the capability of interpreting the causal relationship between explanatory variables and clearance time. In addition, the BMA approach can provide better prediction performance than the Cox proportional hazards model and the accelerated failure time models. Overall, the findings in this study can be useful for traffic emergency management agency to apply an alternative methodology for predicting traffic incident clearance time when model uncertainty is considered.

Keywords: traffic; model; traffic incident; clearance time

Journal Title: Journal of Advanced Transportation
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.