LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spectrophotometric Determination of p-Nitrophenol under ENP Interference

Photo from wikipedia

Engineered nanoparticles (ENPs) have been widely developed in various fields in recent years, resulting in an increasing occurrence of nanoparticles in the natural environment. However, the tiny substances have created… Click to show full abstract

Engineered nanoparticles (ENPs) have been widely developed in various fields in recent years, resulting in an increasing occurrence of nanoparticles in the natural environment. However, the tiny substances have created unexpected confusion in environmental sample testing due to the negative nanoeffect of ENPs. In this paper, a novel technique of spectrophotometric determination of p-nitrophenol (PNP) was developed under the interfering impact of nano-Fe(OH)3, widely distributed in the natural environment as a typical example of ENPs. Because of the strong absorption at the two characteristic peaks of PNP, namely, 317 nm and 400 nm, nano-Fe(OH)3 interfered with the colorimetric determination of PNP. Thus, the developed testing method, with HCl acidification at 60°C and ascorbic acid (AA) masking FeCl3, was proposed and successfully realized the accurate determination of PNP in water samples by ultraviolet spectrophotometry with 317 nm as the absorption wavelength. The final colorimetric system of 5% HCl, 10% CH3OH, and 1% ascorbic acid was confirmed by optimized batch experiments, and the optimum condition of acidification pretreatment was heating at 60°C for 20 min. Further results demonstrated that the proposed novel method had good accuracy and reproducibility even in high-salinity natural water bodies such as groundwater and surface water. The testing technique presented in this paper provided an interesting and useful tool for problem solving of PNP surveys under ENPs' interference and practically supported water quality assessment for a better environment.

Keywords: water; determination; interference; determination nitrophenol; spectrophotometric determination

Journal Title: Journal of Analytical Methods in Chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.