LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental and Numerical Studies on the Negative Flexural Behavior of Steel-UHPC Composite Beams

Photo by jrkorpa from unsplash

The cracking of concrete in the negative moment region for a composite beam subjected to a negative bending moment reduces the beam’s strength and stiffness. To improve the cracking performance… Click to show full abstract

The cracking of concrete in the negative moment region for a composite beam subjected to a negative bending moment reduces the beam’s strength and stiffness. To improve the cracking performance of composite beams, this paper presents an experimental investigation on applying ultrahigh-performance concrete (UHPC) instead of conventional concrete. Three steel-UHPC composite beams with different forms of joints were designed and tested through a unique rotation angle loading method using a spring displacement control testing setup. The crack distribution, rotation versus crack width, load versus spring displacement, and strains in the UHPC slab and steel girders were measured and studied. Nonlinear finite element analysis using ABAQUS based on the damaged plasticity model of concrete was carried out for comparison with the test results. The experimental and numerical results showed that the use of a UHPC slab can enhance the cracking performance of composite beams. Considering the convenience of construction, a reasonable joint form was suggested, and the appropriate UHPC longitudinal laying length in the negative moment region was proposed to be 0.1 L. Furthermore, a simplified formula for calculating the UHPC crack width was developed based on bond-slip theory.

Keywords: uhpc composite; experimental numerical; steel uhpc; composite beams; steel; numerical studies

Journal Title: Advances in Civil Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.