LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reliability Analysis of Gasifier Lock Bucket Valve System Based on DBN Method

Photo from wikipedia

In order to solve the problem of zero-failure data and dynamic failure in gasification system, a dynamic Bayesian network (DBN) combined with Monte Carlo simulations is proposed to analyze the… Click to show full abstract

In order to solve the problem of zero-failure data and dynamic failure in gasification system, a dynamic Bayesian network (DBN) combined with Monte Carlo simulations is proposed to analyze the reliability of the gasifier lock bucket valve system. On the basis of studying the structure of the gasifier lock bucket valve system, the reliability model of the system is built based on DBN, and the structure learning is realized. The Monte Carlo simulation is used for the timed ending test in Bayesian estimation, which effectively solves the problem of zero-failure data and realizes the parameter learning. Through the Metropolis-Hastings (M-Hs) algorithm, the prior distribution of dynamic node is randomly sampled to obtain the target distribution, which makes the reliability predictive inference for DBN of the gasifier lock bucket valve system faster and more accurate. The obtained reliability prediction is a curve varying with time. The results show that the valve frequent switch node of DBN of the gasifier lock bucket valve system is identified as the weak link by the powerful reverse inference for DBN, which needs to be paid more attention to. This method can effectively improve the maintenance level of the gasifier lock bucket valve system and can effectively reduce the possibility of accidents.

Keywords: bucket valve; valve system; system; lock bucket; gasifier lock

Journal Title: Mathematical Problems in Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.