LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Comprehensive Analysis Identified Hub Genes and Associated Drugs in Alzheimer's Disease

Photo from wikipedia

Alzheimer's disease (AD) is the most common neurodegenerative disease among the elderly and has become a growing global health problem causing great concern. However, the pathogenesis of AD is unclear… Click to show full abstract

Alzheimer's disease (AD) is the most common neurodegenerative disease among the elderly and has become a growing global health problem causing great concern. However, the pathogenesis of AD is unclear and no specific therapeutics are available to provide the sustained remission of the disease. In this study, we used comprehensive bioinformatics to determine 158 potential genes, whose expression levels changed between the entorhinal and temporal lobe cortex samples from cognitively normal individuals and patients with AD. Then, we clustered these genes in the protein-protein interaction analysis and identified six significant genes that had more biological functions. Besides, we conducted a drug-gene interaction analysis of module genes in the drug-gene interaction database and obtained 26 existing drugs that might be applied for the prevention and treatment of AD. In addition, a predictive model was built based on the selected genes using different machine learning algorithms to identify individuals with AD. These findings may provide new insights into AD therapy.

Keywords: analysis identified; alzheimer disease; analysis; comprehensive analysis; disease; identified hub

Journal Title: BioMed Research International
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.